Документ утратил силу или отменен. Подробнее см. Справку

3.3. Испытания радиоактивного материала особого вида и радиоактивного материала с низкой способностью к рассеянию

3.3. Испытания радиоактивного материала особого вида

и радиоактивного материала с низкой способностью к рассеянию

3.3.1-С1. Испытания РМ особого вида имитируют возможные воздействия на этот материал при транспортных авариях в случае его выпадения из упаковки при разрушении.

3.3.1-С2. При испытаниях РМ особого вида в виде капсулы содержимое капсулы может быть заменено другим материалом с такими же механическими свойствами. В этом случае соответствие требованиям по сохранению герметичности капсулы может быть проверено методами контроля объемной утечки.

Содержимое капсулы также может быть заменено другим, менее опасным радиоактивным материалом (например, короткоживущие изотопы), и после испытаний оценена утечка его по активности выщелачиванием.

3.3.1-С3. Испытания конструкции капсулы могут быть проведены с имитатором радиоактивного материала. Термин "имитатор" означает точную копию закрытого радиоактивного источника, капсула которого имеет такую же конструкцию и сделана из тех же материалов, что и капсула радиоактивного источника, который имитатор представляет, но вместо РМ капсула содержит вещество с механическими, физическими и химическими свойствами, как можно более близкими к РМ, и содержащее индикаторный радиоактивный материал только в виде следов. Индикатор должен быть растворимым в растворителе, который не воздействует на капсулу. Процедура, описанная в стандарте ISO 2919 [86], использует либо активность 2 МБк Sr-90 и Y-90 в виде растворимой соли, либо 1 МБк Co-60 в виде растворимой соли. По возможности следует использовать более короткоживущие нуклиды. Однако если применяется метод оценки с выщелачиванием, то следует тщательно проводить интерпретацию результатов. Следует учитывать масштабные эффекты, значение которых будет зависеть от максимальной активности, которая содержится в капсуле, а также от физической формы содержимого капсулы, особенно от растворимости содержимого по сравнению с индикаторным радионуклидом. Этой проблемы можно избежать в случае проведения испытаний методом объемной утечки (см. пп. 603.3 и 603.4 TS-G-1.1) (справки 2.2.2-С5 и 2.2.2-С6 настоящего Руководства соответственно). Обычно испытания для РМ особого вида проводятся с использованием полномасштабных закрытых источников излучения или нерассеиваемых твердых материалов, так как они недороги и результаты испытаний легко интерпретируются (п. 704.3 TS-G-1.1).

3.3.1-С4. В Правилах заданы четыре вида испытаний (испытание на столкновение, на удар, на изгиб и тепловое испытание), предназначенных для имитации механических и тепловых воздействий, которым РМ особого вида могут подвергнуться в случае выхода из своего упаковочного комплекта (п. 704.1 TS-G-1.1).

3.3.1-С5. Требования к этим испытаниям устанавливаются для гарантии, что РМ особого вида, будучи в результате аварии погруженными в жидкость, не будут рассеиваться выше пределов, указанных в п. 603 Правил МАГАТЭ-96 (п. 704.2 TS-G-1.1).

3.3.4-С1. Поскольку этому испытанию предназначено быть аналогом испытания на падение с высоты 9 м для упаковки типа B(U) (см. п. 603.1 TS-G-1.1) (справка 2.2.2-С2 настоящего Руководства), то образец должен падать таким образом, чтобы получить максимальные повреждения (п. 705.1 TS-G-1.1).

3.3.5-С1. Для получения максимального повреждения следует уделять особое внимание условиям испытания на удар (п. 706.1 TS-G-1.1).

3.3.8-С1. Признается, что испытания, указанные в пп. 3.3.4, 3.3.5, 3.3.7 НП-053-04 (пп. 705, 706, 708 Правил МАГАТЭ-96), не являются уникальными, и что могут быть равно приемлемы другие международные нормы испытаний. Два испытания, описанные Международной организацией по стандартизации, были определены как адекватная альтернатива (п. 709.1 TS-G-1.1).

3.3.8-С2. Альтернативное испытание, предложенное в п. 3.3.8.а) НП-053-04 (п. 709.a) Правил МАГАТЭ-96) является испытанием на удар класса 4 ISO 2919 [86] и состоит в следующем: молот массой 2 кг, с плоской ударной поверхностью, имеющей диаметр 25 мм, со скругленной кромкой радиусом 3 мм падает на образец с высоты 1 м; образец размещается на стальной наковальне, которая имеет массу не менее 20 кг. Требуется, чтобы наковальня была жестко закреплена и имела достаточно большую плоскую поверхность, чтобы вместить весь образец. Это испытание может быть проведено одновременно вместо испытания на столкновение (п. 3.3.4 НП-053-04 или п. 705 Правил МАГАТЭ-96) и испытания на удар (п. 3.3.5 НП-053-04 или п. 706 Правил МАГАТЭ-96) (п. 709.2 TS-G-1.1).

3.3.8-С3. Альтернативное испытание, предложенное в п. 3.3.8.б) НП-053-04 (п. 709.b) Правил МАГАТЭ-96), является температурным испытанием класса 6 ISO 2919 [86] и состоит в том, что образец подвергается воздействию минимальной температуры -40 °C в течение 20 мин. и нагревается за период времени, не превышающий 70 мин., от температуры окружающей среды до 800 °C; после этого образец выдерживается в течение 1 ч при температуре 800 °C, за которым следует тепловой удар при погружении в воду, температура которой 20 °C (п. 709.3 TS-G-1.1).

3.3.10-С1. Для образцов, содержащих либо имитирующих содержание радиоактивных материалов в закрытой капсуле, следует применять оценку выщелачивания, как определено в п. 3.3.10.а) НП-053-04 (п. 711.а) Правил МАГАТЭ-96), либо один из методов оценки объемной утечки, определенных в п. 3.3.10.б) НП-053-04 (п. 711.b) Правил МАГАТЭ-96). Оценка на выщелачивание аналогична методу, применяемому к нерассеиваемым твердым материалам (см. п. 3.3.9 НП-053-04 или п. 710 Правил МАГАТЭ-96), за исключением того, что образец не помещается первоначально в воду на 7 дней. Другие этапы остаются теми же самыми (п. 711.1 TS-G-1.1).

3.3.10-С2. Альтернативный метод оценки объемной утечки, определенный в п. 711(a) Правил МАГАТЭ-96, может состоять из любых испытаний, описанных в ISO 9978 [30], которые приемлемы для компетентного органа. Испытания в основном позволяют сокращать время испытаний, и к тому же некоторые из них предназначены для нерадиоактивных веществ. Выбор метода оценки объемной утечки обеспечивает сокращение времени, связанного с полной последовательностью испытаний, и может включать сокращение времени, связанного с использования защитной камеры в процессе испытания. Таким образом, выбор метода оценки объемной утечки может приводить к значительному снижению затрат (п. 711.2 TS-G-1.1).

3.3.11-С1. Чтобы иметь освобождение от требований к упаковкам типа C, РМНР должны удовлетворять тем же самым критериям работоспособности в отношении удара и огнестойкости, что и упаковки типа C, не создавая при этом значительного количества рассеиваемых материалов (п. 712.1 TS-G-1.1).

3.3.11-С2. Чтобы материал мог быть квалифицирован как РМНР, определенные свойства материала должны быть продемонстрированы путем соответствующих прямых физических испытаний, аналитическими методами или их надлежащей комбинацией. Должно быть показано, что выполнен критерий работоспособности, указанный в п. 605 Правил МАГАТЭ-96, если содержимое упаковок типа B(U) или упаковок типа B(M) было подвергнуто необходимым испытаниям. Требуется проведение трех испытаний: испытание на столкновение со скоростью 90 м/с о жесткую мишень, усиленное тепловое испытание и испытание на выщелачивание. Испытание на столкновение и тепловое испытание не являются последовательными. Для испытания на выщелачивание материал должен быть в виде, представляющем свойства материала либо после испытания на столкновение, либо после теплового испытания. Испытания, проводимые для демонстрации необходимых для РМНР свойств, не требуется проводить с полным содержимым упаковки, если результаты, полученные с представительной долей содержимого, могут быть надежным образом перенесены на полное содержимое упаковки. То есть, например, это может быть случай, когда содержимое упаковки состоит из нескольких идентичных составляющих и может быть показано, что умножение выброса, установленного для одной составляющей, на общее число компонентов в упаковке даст верхний предел оценки выброса для целого содержимого упаковки. Для больших предметов также можно проводить испытания с их представительной частью или с уменьшенной моделью, если установлено, что результаты испытаний, полученные таким путем, могут быть экстраполированы на поведение выброса для всего содержимого упаковки (п. 712.2 TS-G-1.1).

3.3.11-С3. Для испытаний на столкновение при скорости 90 м/с

должно быть продемонстрировано, что удар всего содержимого

упаковки, не защищенного упаковкой, о жесткую мишень со скоростью

90 м/с приводит к выходу летучих радиоактивных материалов в

газообразной форме или в форме частиц с аэродинамически

эквивалентным диаметром (АЭД) до 100 мкм в количестве, меньшем,

чем 100 A . АЭД аэрозольных частиц определяется как диаметр сферы

2

плотностью 1 г/куб. см, который имеет те же характеристики

осаждения в воздухе. Он может определяться с помощью большого

количества способов и измерительных инструментов, таких как

импакторы, оптические счетчики частиц, центробежные сепараторы

(циклоны). Могут использоваться различные процедуры проведения

экспериментов. Один из возможных подходов - удар горизонтально

летящего образца о вертикальную стену, имеющую все требуемые для

жесткой мишени свойства. Все частицы с АЭД менее 100 мкм

становятся переносимыми воздухом и могут транспортироваться

восходящим потоком воздуха, с соответствующей скоростью, и затем

подвергаться анализу относительно размера частиц с помощью

установленной измерительной техники для аэрозолей. Воздушный поток

с восходящей скоростью около 30 см/с может служить в качестве

сепаратора, в котором частицы с АЭД менее 100 мкм будут оставаться

в потоке, в то время как более крупные частицы будут удаляться из

потока, поскольку скорость их осаждения превышает 30 см/с

(п. 712.3 TS-G-1.1).